Active repression of IFN regulatory factor-1-mediated transactivation by IFN regulatory factor-4.

نویسندگان

  • Kayo Yoshida
  • Kazuo Yamamoto
  • Tomoko Kohno
  • Noriko Hironaka
  • Kiyoshi Yasui
  • Chojiro Kojima
  • Hiroshi Mukae
  • Jun-ichi Kadota
  • Shoichi Suzuki
  • Kiri Honma
  • Shigeru Kohno
  • Toshifumi Matsuyama
چکیده

IFN regulatory factor-4 (IRF-4) is a transcription factor that is involved in the development and the functions of lymphocytes, macrophages and dendritic cells. Despite their critical roles in immune system regulation, the target genes controlled by IRF-4 are poorly understood. In this study, we determined the consensus DNA-binding sequences preferred for IRF-4 by in vitro binding site selections. IRF-4 preferentially bound to the sequences containing tandem repeats of 5'-GAAA-3', flanked by CpC, in most cases. IRF-4 repressed the promoter bearing tandem copies of the selected binding sequence, while IRF-1 activated the same constructs. Interestingly, the IRF-1-dependent transactivation is inhibited in the presence of IRF-4, but not IRF-2. A series of deletion mutants of IRF-4 revealed that its DNA-binding domain was necessary and sufficient to antagonize the IRF-1-dependent transactivation. This dominant negative action of IRF-4 over IRF-1 was also observed in a natural promoter context, such as the TRAIL gene. These results indicate that IRF-4 acts as a natural antagonist against IRF-1 in immune cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element.

Type I IFNs cause the induction of a subset of genes termed IFN-stimulated genes (ISGs), which harbor a specific DNA element, IFN-stimulated response element (ISRE). This ISRE confers the responsiveness to the IFN signal through the binding of a family of transcription factors designated IFN regulatory factors (IRFs). Some IRFs can bind to the DNA alone, such as IRF-1, which elicits transcripti...

متن کامل

Constitutive silencing of IFN-β promoter is mediated by NRF (NF-κB-repressing factor), a nuclear inhibitor of NF-κB

Transcriptional regulation of the interferon-β (IFN-β) gene is characterized by strict constitutive repression and virus-specific activation. Previous studies have shown that the IFN-β promoter is constitutively repressed by a negative regulatory element (NRE). Isolated NRE acts as a constitutive and positionindependent silencer on the NF-κB-binding sites. Here, we describe the identification a...

متن کامل

Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes.

The promoter regions of many interferon-inducible genes share a short DNA sequence motif, termed the interferon consensus sequence (ICS) to which several regulatory proteins bind. A murine cDNA which encodes an ICS binding protein has been reported (M-ICSBP). The cloning of the human homologue of ICSBP (H-ICSBP) is described. H-ICSBP shares high sequence homology with its murine cognate. The de...

متن کامل

The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation.

Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and ot...

متن کامل

Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity.

Histone deacetylase (HDAC) activity, commonly correlated with transcriptional repression, was essential for transcriptional induction of IFN-stimulated genes (ISG). Inhibition of HDAC function led to global impairment of ISG expression, with little effect on basal expression. HDAC function was not required for signal transducer and activator of transcription tyrosine phosphorylation, nuclear tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International immunology

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2005